Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
China Journal of Chinese Materia Medica ; (24): 2931-2939, 2023.
Article in Chinese | WPRIM | ID: wpr-981425

ABSTRACT

The U6 promoter is an important element driving sgRNA transcription in the CRISPR/Cas9 system. Seven PqU6 promo-ter sequences were cloned from the gDNA of Panax quinquefolium, and the transcriptional activation ability of the seven promoters was studied. In this study, seven PqU6 promoter sequences with a length of about 1 300 bp were cloned from the adventitious roots of P. quinquefolium cultivated for 5 weeks. Bioinformatics tools were used to analyze the sequence characteristics of PqU6 promoters, and the fusion expression vectors of GUS gene driven by PqU6-P were constructed. Tobacco leaves were transformed by Agrobacterium tumefaciens-mediated method for activity detection. The seven PqU6 promoters were truncated from the 5'-end to reach 283, 287, 279, 289, 295, 289, and 283 bp, respectively. The vectors for detection of promoter activity were constructed with GUS as a reported gene and used to transform P. quinquefolium callus and tobacco leaves. The results showed that seven PqU6 promoter sequences(PqU6-1P to PqU6-7P) were cloned from the gDNA of P. quinquefolium, with the length ranged from 1 246 bp to 1 308 bp. Sequence comparison results showed that the seven PqU6 promoter sequences and the AtU6-P promoter all had USE and TATA boxes, which are essential elements affecting the transcriptional activity of the U6 promoter. The results of GUS staining and enzyme activity test showed that all the seven PqU6 promoters had transcriptional activity. The PqU6-7P with a length of 1 269 bp had the highest transcriptional activity, 1.31 times that of the positive control P-35S. When the seven PqU6 promoters were truncated from the 5'-end(PqU6-1PA to PqU6-7PA), their transcriptional activities were different in tobacco leaves and P. quinquefolium callus. The transcriptional activity of PqU6-7PA promoter(283 bp) was 1.59 times that of AtU6-P promoter(292 bp) when the recipient material was P. quinquefolium callus. The findings provide more ideal endogenous U6 promoters for CRISPR/Cas9 technology in ginseng and other medicinal plants.


Subject(s)
Panax/genetics , Promoter Regions, Genetic , Agrobacterium tumefaciens/genetics , Computational Biology , Cloning, Molecular
2.
Electron. j. biotechnol ; 12(2): 10-11, Apr. 2009. ilus, tab
Article in English | LILACS | ID: lil-551371

ABSTRACT

We hereby present the complete sequence and annotation of pRG930cm, a spectinomycin/streptomycin/chloramphenicol-resistant cosmid vector. pRG930cm (17,256 bp; GenBank Accession No.: FM174471) has a broad host range, and is stably maintained by a number of Gram-negative bacteria including Pseudomonas spp, Escherichia coli, Agrobacterium tumefaciens and Azorhizobium caulinodans ORS571. pRG930cm is already widely used and its sequence will aid efficient construction and analysis of cosmid libraries.


Subject(s)
Azorhizobium caulinodans/genetics , Cosmids , Escherichia coli/genetics , Pseudomonas/genetics , Agrobacterium tumefaciens/genetics , Chloramphenicol Resistance , Genetic Engineering , Spectinomycin , Streptomycin
3.
J Biosci ; 2008 Jun; 33(2): 249-57
Article in English | IMSEAR | ID: sea-110828

ABSTRACT

Coat protein (CP) -mediated resistance against an Indian isolate of the Cucumber mosaic virus (CMV) subgroup IB was demonstrated in transgenic lines of Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transformation. Out of the fourteen independently transformed lines developed, two lines were tested for resistance against CMV by challenge inoculations. The transgenic lines exhibiting complete resistance remained symptomless throughout life and showed reduced or no virus accumulation in their systemic leaves after virus challenge. These lines also showed virus resistance against two closely related strains of CMV. This is the first report of CP-mediated transgenic resistance against a CMV subgroup IB member isolated from India.


Subject(s)
Capsid Proteins/genetics , Cucumovirus/genetics , Enzyme-Linked Immunosorbent Assay , Immunoblotting , Plants, Genetically Modified/genetics , Agrobacterium tumefaciens/genetics , Tobacco/genetics , Transformation, Genetic
4.
J Biosci ; 2005 Dec; 30(5): 627-38
Article in English | IMSEAR | ID: sea-111256

ABSTRACT

In order to enhance the resistance to pests, transgenic maize (Zea mays L.) plants from elite inbred lines containing the gene encoding snowdrop lectin (Galanthus nivalis L. agglutinin; GNA) under control of a phloem-specific promoter were generated through the Agrobacterium tumefaciens-mediated method. The toxicity of GNA-expressing plants to aphids has also been studied. The independently derived plants were subjected to molecular analyses. Polymerase chain reaction (PCR) and Southern blot analyses confirmed that the gna gene was integrated into maize genome and inherited to the following generations. The typical Mendelian patterns of inheritance occurred in most cases. The level of GNA expression at 0.13%-0.28% of total soluble protein was observed in different transgenic plants. The progeny of nine GNA-expressing independent transformants that were derived separately from the elite inbred lines DH4866, DH9942, and 8902, were selected for examination of resistance to aphids. These plants synthesized GNA at levels above 0.22% total soluble protein, and enhanced resistance to aphids was demonstrated by exposing the plants to corn leaf aphid (Rhopalosiphum maidis Fitch) under greenhouse conditions. The nymph production was significantly reduced by 46.9% on GNA-expressing plants. Field evaluation of the transgenic plants supported the results from the inoculation trial. After a series of artificial self-crosses, some homozygous transgenic maize lines expressing GNA were obtained. In the present study, we have obtained new insect-resistant maize material for further breeding work.


Subject(s)
Animals , Aphids/growth & development , Biological Assay , Blotting, Southern , Blotting, Western , Fertility , Insect Control , Insecticides , Mannose-Binding Lectins/genetics , Pest Control, Biological , Plant Lectins/genetics , Plants, Genetically Modified , Plasmids , Agrobacterium tumefaciens/genetics , Survival Analysis , Transformation, Genetic , Zea mays/genetics
5.
J Biosci ; 2005 Dec; 30(5): 647-55
Article in English | IMSEAR | ID: sea-111024

ABSTRACT

Water stress is by far the leading environmental stress limiting crop yields worldwide. Genetic engineering techniques hold great promise for developing crop cultivars with high tolerance to water stress. In this study, the Brassica oleracea var. acephala BoRS1 gene was transferred into tobacco through Agrobacterium-mediated leaf disc transformation. The transgenic status and transgene expression of the transgenic plants was confirmed by polymerase chain reaction (PCR) analysis, Southern hybridization and semi-quantitative one step RT-PCR analysis respectively. Subsequently, the growth status under water stress, and physiological responses to water stress of transgenic tobacco were studied. The results showed that the transgenic plants exhibited better growth status under water stress condition compared to the untransformed control plants. In physiological assessment of water tolerance, transgenic plants showed more dry matter accumulation and maintained significantly higher levels of leaf chlorophyll content along with increasing levels of water stress than the untransformed control plants. This study shows that BoRS1 is a candidate gene in the engineering of crops for enhanced water stress tolerance.


Subject(s)
Biological Assay , Blotting, Southern/methods , Brassica/genetics , Chlorophyll/analysis , Dehydration/genetics , Germination/physiology , Heat-Shock Proteins/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plasmids , Polymerase Chain Reaction/methods , Agrobacterium tumefaciens/genetics , Tobacco/genetics , Transformation, Genetic
6.
Rev. argent. microbiol ; 37(2): 69-72, Apr.-June 2005. ilus, tab
Article in English | LILACS | ID: lil-634490

ABSTRACT

The model ectomycorrhizal fungus Pisolithus microcarpus isolate 441 was transformed by using Agrobacterium tumefaciens LBA1100 and AGL-1. The selection marker was the Shble gene of Streptoallotecius hidustanus, conferring resistance to phleomycin, under the control of the gpd gene promoter and terminator of Schizophyllum commune. Transformation resulted in phleomycin resistant clones which were confirmed by PCR to contain the resistance cassette. A. tumefaciens-mediated gene transfer would allow the development of RNA interference technology in P. microcarpus.


El hongo ectomicorrícico modelo Pisolithus microcarpus aislamiento 441 fue transformado utilizando Agrobacterium tumefaciens LBA 1100 y AGL-1. El marcador de selección fue el gen Shble de Streptoallotecius hidustanus, el cual confiere resistencia a fleomicina, bajo el control del promotor y terminador del gen gpd de Schizophyllum commune. La transformación resultó en clones resistentes a fleomicina comprobándose por PCR la presencia del transgen. La transferencia génica mediada por Agrobacterium podría permitir el desarrollo de la tecnología de interferencia por ARN en P. microcarpus.


Subject(s)
Agrobacterium tumefaciens/genetics , Bacterial Proteins/genetics , Basidiomycota/genetics , DNA, Bacterial/genetics , Transformation, Genetic , Agrobacterium tumefaciens/physiology , Basidiomycota/drug effects , Drug Resistance, Bacterial/genetics , Drug Resistance, Fungal/genetics , Genes, Synthetic , Polymerase Chain Reaction , Phleomycins/pharmacology , Promoter Regions, Genetic/genetics , Selection, Genetic , Schizophyllum/genetics
7.
Indian J Exp Biol ; 2002 Mar; 40(3): 329-33
Article in English | IMSEAR | ID: sea-61798

ABSTRACT

The effect of growth regulators and culture conditions on the morphogenetic response of cotyledonary leaf discs was studied in popular cucumber variety (Cucumis sativus cv. Sheetal). Organogenesis was induced directly without any intervening callus phase on Murashige and Skoog medium supplemented with different concentrations of benzyladenine and indole propionic acid. Best results (93%) were obtained in the presence of the 4 mg/L benzyladenine and 1 mg/L IPA. The elongated shoots were rooted in basal medium with 1 mg/L indole butyric acid, hardened and transferred to the field conditions. Genetic transformation system has been established for Cucumis sativus cv. Sheetal, plants by infecting cotyledonary explants with Agrobacterium tumefaciens strain LBA4404 carrying binary plasmid pBI121, which contains scorable marker, beta-glucuronidase and selectable marker nptII under the CaMV 35S promoter. Infection was most effective when explants were infected with Agrobacterium for 15 min and co-cultivated for 2 days in the co-cultivation medium. Shoots were regenerated directly from cotyledonary leaf explants in the presence of kanamycin (50 microg/ml) and analysed. Southern blot analysis confirmed that transformation had occurred. This method will allow genetic improvement of this crop by the introduction of agronomically important genes.


Subject(s)
Aminobutyrates/pharmacology , Cucumis sativus/drug effects , Genetic Engineering , Genetic Vectors , Indoles/pharmacology , Plant Growth Regulators/pharmacology , Plants, Genetically Modified , Agrobacterium tumefaciens/genetics , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL